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Improvement of Tracking Control of a Sliding Mode Controller for Robot
Manipulators by a Neural Network
Seul Jung

Abstract: This article presents a neural network control technique to improve the tracking performance of a robot
manipulator controlled by the sliding mode control method in a non-model-based framework. The sliding mode
controller is a typical nonlinear controller that has been well developed in theory and used in many applications due
to its simplicity and practicality. Selection of the gain of the nonlinear function plays an important role in perfor-
mance as well as stability. When the sliding mode controller is used for the non model-based configuration in robot
control, the nonlinear gain should be selected large enough to guarantee the stability. Since the appropriate selection
of the gain value is essential and difficult in the sliding mode control framework, a neural network compensator is
introduced at the trajectory level to help the fixed gain deal with the stability and performance more intelligently.
Stability of the proposed control scheme is analyzed. Simulation studies of following the Cartesian trajectory for a
three-link rotary robot manipulator are conducted to confirm the control improvement by the neural network.
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1. INTRODUCTION

The disturbance observer (DOB) technique has been ac-
tively used in motion control to achieve the robustness
[1, 2]. One weak point of the DOB scheme is that the
structure requires the inverse model of the system, which
is difficult to obtain, especially for the nonlinear systems
[3]. An adaptive control approach with dynamic program-
ming has been presented as well [4, 5].

The sliding mode control method is one of non-model-
based control candidates for nonlinear systems that have
been well developed theoretically. The performance of the
sliding mode control method depends upon the selection
of the nonlinear gain suitably to guarantee the global sta-
bility. When the sliding mode controller is used for the
non model-based configuration in robot control, the gain
for the nonlinear function should be selected with care to
satisfy the stability. The gain value becomes relatively
large compared with the model–based control method and
this leads to the chattering behavior of the output.

Therefore, intelligent tools may compensate for the lack
of the sliding mode control method. Combining the slid-
ing mode control method with AI technologies will pro-
vide the better performance to control systems. Appropri-
ate intelligent tools such as neural network, fuzzy logic,
and genetic algorithms can be applied to control systems
to satisfy performance specifications or at least to improve
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the performance.
Combing the neural network with the primary control

methods has been actively accomplished to have the bet-
ter performance in the literature [6–13]. Neural networks
have been added to the controlled system as an auxiliary
controller to achieve the real-time control performance.
Various neural network control schemes have been pre-
sented.

The feedback error learning (FEL) control scheme re-
places the feed-forward controller with a neural network
in the feedback control scheme [6]. The stability analysis
of a radial basis function (RBF) network control scheme
has been done for a robot manipulator [11]. Control appli-
cations with the stability analysis of the FEL scheme for
robot manipulator have been extensively presented by re-
formulating robot dynamic equations with tracking error
functions along with simulation results [9].

Neural network control schemes along with the sliding
mode control for robot manipulators have been presented
[10–12].

In other aspects, differing the compensation location
can provide a structural advantage without bothering the
modification of the inside controllers while achieving the
same goal of the FEL scheme. This scheme is known as
the reference compensation technique (RCT) [13]. The
real implementation of the RCT scheme has been pre-
sented along with the stability analysis of the RCT scheme
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for controlling robot manipulators by neural networks .
In this paper, since the appropriate selection of the gain

value in the sliding mode control is essential, a neural net-
work is introduced at the trajectory level by forming the
RCT scheme to achieve the effect of selecting the appro-
priate gain of the sliding mode control indirectly. The sta-
bility of the proposed control scheme is analyzed.

Finally, simulation studies of following the Cartesian
trajectory of the three-link rotary robot manipulator under
nonlinear uncertainties are conducted to confirm the per-
formance of the neuro-sliding mode control scheme. Per-
formances of tracking control by both the sliding mode
control and the neuro-sliding mode control scheme are
compared.

2. ROBOT MANIPULATOR DYNAMICS

In general, the dynamic equation of an n degrees-of-
freedom robot manipulator in the joint space coordinates
is described by

D(q)q̈+C(q, q̇)q̇+G(q) = τ, (1)

where q is the n×1 joint angle vector, q̇ is the n×1 joint
angular velocity vector, and q̈ is the n× 1 joint angular
acceleration vector, D(q) is the n× n symmetric positive
definite inertia matrix, C(q, q̇)q̇ is the n× 1 Coriolis and
centrifugal torque vector, G(q) is the n× 1 gravitational
torque vector, and τ is the n×1 joint torque vector.

Define the joint trajectory tracking errors as

e = qd −q, ė = q̇d − q̇, ë = q̈d − q̈, (2)

where qd is the reference trajectory. From (2), the error
surface functions are defined as

s = ė+λe, ṡ = ë+λ ė, (3)

where λ is a positive constant.
Rearranging q̇, q̈ from (3) in terms of s, ṡ yields

q̇ = q̇d − (s−λe), q̈ = q̈d − (ṡ−λ ė). (4)

Substituting q̇, q̈ of (4) into the dynamic equation (1)
yields the modified dynamic equation of a robot manip-
ulator in terms of s.

τm(q, q̇)− (D(q)ṡ+C(q, q̇)s) = τ, (5)

where τm(q, q̇) = D(q)(q̈d + λ ė) + C(q̇d + λe) + G(q)
which includes all the uncertainties of a robot manipula-
tor. This term is expected to be cancelled out by the sliding
mode controller with the help of a neural network. As a
result, equation (5) satisfies the tracking performance as
well as the stability when the controller is designed with
the function of the error surface s.

3. NEURAL NETWORK

A radial basis function (RBF) network has been pop-
ular in control applications owing to its simplicity and a
fast learning structure for a real-time control fashion. A
Gaussian function is used as the nonlinear function that
measures the Euclidean distance among input data. Al-
though the RBF network has a structural advantage, the
inside weights are quite sensitive that the appropriate se-
lection of learning rates and initial weight values are re-
quired which is not easy.

Here a RBF-like multilayered perceptron network is
used as in [14]. The RBF-like network has only one hid-
den layer and the output is linear as shown in Fig. 1.

The nonlinear function of the hidden layer is described
as

ψ j(ei) =
1− exp(−∑NI

i=0 ei)

1+ exp(−∑NI
i=0 ei)

, (6)

where ei is the ith input element and NI is the number of
input elements.

The output of the hidden layer is summed together to
form the output.

τk =
NH

∑
j=1

ψ jw jk +bk, (7)

where ψ j is jth output of the hidden layer and w jk is the
weight between the jth hidden unit and the kth output, bk

is the bias weight of the kth output, and NH is the number
of hidden units.

Fig. 1 shows the RBF-like multilayer perceptron net-
work (MLP) that does not have the weights between the
input and hidden layer. The advantage of this network
is that the number of the update weights is a half of the
RBF network. This may lose the flexibility of a nonlinear
mapping ability of the MLP network, but the simplified

Fig. 1. Neural network structure.
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network may perform evenly for the control applications
that are not highly nonlinear.

4. SLIDING MODE CONTROL

4.1. Model-based sliding mode control scheme
The sliding mode control is a well-known nonlinear

control method used for both model-based and non model-
based control schemes. The error surface is defined as in
(3) for the control input to push states to the error surface
that guarantees zero.

The control law of the model based-sliding mode con-
trol is given as

τ = τ̂m + τsmc_m, (8)

where τ̂m is the estimate of model-based control τm and
τsmc_m is a sliding mode control. Equation (8) is described
as

τ = D̂(q̈d +λ ė)+Ĉ(q̇d +λe)+ Ĝ+Kssgn(s), (9)

where D̂, Ĉ, Ĝ are the estimates of the robot dynamic
model and Ks is a gain for the nonlinear function of the
sliding mode.

For stability, the Lyapunov function is defined as

V =
1
2

sT Ds. (10)

Differentiating the Lyapunov function V yields

V̇ =
1
2

sT Ḋs+ sT Dṡ. (11)

Substituting Dṡ from (5) into (11) yields

V̇ =
1
2

sT Ḋs+ sT (τm −Cs− τ)

=
1
2

sT (Ḋ−2C)s+ sT (τm − τ). (12)

Applying the skew symmetry of Ḋ−2C = 0 to (12) yields

V̇ = sT (τm − τ). (13)

Substituting the control law in (9) into (13) yields

V̇ = sT (∆τm −Kssgn(s)), (14)

where ∆τm = τm− τ̂m = ∆D(q̈d +λ ė)+∆C(q̇d +λe)+∆G
and ∆D = D− D̂, ∆C =C−Ĉ, ∆G = G− Ĝ.

If the estimated model is correct, then ∆τm = 0 leads to
the stability as

V̇ =−sT Kssgn(s)< 0. (15)

It satisfies the Lyapunov stability condition.

Fig. 2. Non model-based sliding mode control structure.

However, there are always the modeling errors. Then
we have the following condition to be satisfied for the sta-
bility.

km > |∆τm|, (16)

where km is the smallest positive eigenvalue of the gain
matrix Ks.

The gain Ks can be selected to satisfy (16) depending
upon the magnitude of ∆τm for the stability, but we still
have the inherent chattering problem.

4.2. Non model-based sliding mode control scheme
For the nonmodel-based control case, the control law

becomes

τ = τn + τsmc_n

= Kc(ė+λe)+Kssgn(s), (17)

where τn is the feedback controller, Ks and Kc are a posi-
tive gain matrix of the sliding mode controller. The control
block diagram is shown in Fig. 2.

From (13), we have

V̇ = sT (∆τn −Kssgn(s)), (18)

where ∆τn = τm − τn = D(q̈d + λ ė)+C(q̇d + λe)+G−
Kc(ė+λe).

To satisfy the stability, we have the magnitude condition

km > |∆τn|. (19)

This means that the gain Ks has to cover all the dynamics
of the robot manipulator. We also know that km in (19)
should be selected as a much larger value than that in (16).
It is clear that a larger gain may cause a chattering problem
severely. The fixed controller gain Ks may not satisfy the
stability when (19) does not hold.

Therefore, our proposal here is to introduce a neural
network to compensate for the dynamics of a robot manip-
ulator to reduce ∆τn further to minimize the burden of Ks

such that (19) can be satisfied under the constant gain Ks

with ease in the non-model-based control configuration.

5. NEURO-SLIDING MODE CONTROL

5.1. Neuro-sliding mode control scheme
A RBF-like neural network is added to the sliding mode

control for the non model-based control framework as
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Fig. 3. Neuro-sliding mode control structure.

shown in Fig. 3. A neural network is added at the tra-
jectory level to modify the reference trajectory instead of
modifying torque values inside the control structure.

Adding neural network outputs at the trajectory, the
control law becomes

τ = Kc(q̇d − q̇+λ (qd −q+qn))+Kssgn(s)

= Kc(ė+λe)+Kssgn(s)+Kcλqn

= Kcs+Kssgn(s)+Kcλqn, (20)

where Kc is the constant controller gain.
Combining (20) with the dynamic equation (5) yields

the closed loop error equation as

Dṡ+(C+Kc)s = τm(q, q̇)−Kcλqn −Kssgn(s). (21)

Note that (21) tells us that the robot dynamic equation is
compensated by both the sliding mode controller and the
neural network controller.

5.2. Learning process
Learning of the neural network uses the back-

propagation algorithm to update weights. Then we have
to define the learning signal to form the objective function
to be minimized.

From (20), we define the learning signal as

v = Kcs+Kssgn(s) = τ −Kcλqn. (22)

Since we need to minimize the feedback control error v
instead of e, the objective function is formed as

E =
1
2

vT v, (23)

where v ∈ Rn×1 is considered as the training signal.
The gradient with respect to the weight is used and cal-

culated to minimize the objective function as

∆w =−η
∂E
∂w

=−η
∂E
∂v

∂v
∂w

, (24)

where η is the learning rate and w is the weight vector.
The gradient can be obtained from (22) as

∆w =−η
∂v
∂w

v = η ′[
∂qn

∂w
]T Kcv, (25)

where η ′ = ηλ is the learning rate.
Weights are updated at every sampling time as

w(t +1) = w(t)+∆w(t)+α∆w(t −1), (26)

where α is the momentum constant.

5.3. Stability analysis
Based on the neuro-sliding mode control structure, sta-

bility is analyzed. The universal approximation property
of the neural network can approximate any nonlinear func-
tions as

τm(q, q̇) = Φ(w,e, ė) = KcλW T ψ + ε, (27)

where W is the weight matrix, ψ is the output vector of
the hidden layer and ε is the approximation error vector.

From (20) and (27), the control law becomes the mul-
tiplication of the gain Kc to the addition of the feedback
controller and the neural network output.

τ = Kc(λŴ T ψ + s)+Kssgn(s). (28)

Substituting (27) and (28) into (5) yields the closed loop
error equation as

Dṡ+(C+Kc)s = Kssgn(s)+KcλW̃ T ψ + ε, (29)

where W̃ T =W T −Ŵ T and W T is the true weights and Ŵ T

is the approximation of the true weight.
Define the Lyapunov function as

L =
1
2

sT Ds+
1
2

Tr{W̃ T Γ−1W̃}, (30)

where Tr is Trace of the matrix and Γ−1 is positive con-
stant matrix.

Differentiating (30) yields

L̇ =
1
2

sT Ḋs+ sT Dṡ+Tr{W̃ T Γ−1 ˙̃W}. (31)

From (29), we have

Dṡ = KcλW̃ T ψ +Kssgn(s)− (C+Kc)s+ ε. (32)

Substituting Dṡ of (32) into (31) yields

L̇ =
1
2

sT (Ḋ−2C)s− sT Kcs− sT Kssgn(s)

+Tr{W̃ T (Γ−1 ˙̃W +KcλψsT )}+ sT ε. (33)

Using the skew symmetry property of a robot manipu-
lator Ḋ−2C = 0 simplifies (33) as

L̇ =− sT Kcs− sT Kssgn(s)

+Tr{W̃ T (Γ−1 ˙̃W +KcλψsT )}+ sT ε. (34)
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To guarantee the stability for L̇< 0, we select the update
law for the weights as

˙̃W = Ẇ − ˙̂W =− ˙̂W =−ΓλKcψsT . (35)

Substituting the update law ˙̂W = ΓλKcψsT into (34)
yields

L̇ =−sT Kcs− sT Kssgn(s)+ sT ε. (36)

To satisfy L̇ < 0 for the stability in (36), we can select the
sliding mode gain Ks large enough to satisfy the following
condition, which can be easily done such that

|sT Kssgn(s)|> |sT ε|. (37)

Equation (37) can be represented as

km|s|> |sT ε|. (38)

It can further simplified as

km > |ε|. (39)

Therefore, the stability is a matter of selection of the gain
km to satisfy the relationship of (39).

Comparing with the equation (16), we see here that
the neural network helps the sliding mode controller to
guarantee the stability although the modeling error is not
known.

6. SIMULATION

6.1. Desired trajectory
A three-link rotary robot manipulator is controlled in

the Cartesian space. The robot is a type of industrial robot
that has the mass of each link such as m1 = 30 Kg, m2 =
17.4 Kg, m3 = 4.8 Kg, and its length as l1 = 0.66 m, l2 =
0.43 m, l3 = 0.43 m. Initial joint angles of the robot are
set to q = [0.6378 0.8260 −1.2445]T as shown in Fig. 4.
The robot is commanded to follow the circular trajectory
in the Cartesian space.

Desired trajectory is slanted by 45 degrees in x and z
axis as shown in Fig. 4.

xd = 0.408+ cos(−π/4)(0.2cos(t)),

yd = 0.408+0.2sin(t),

zd = 0.66− sin(−π/4)(0.2cos(t)). (40)

Friction terms are added to each joint to see the effect
of nonlinear uncertainties. The friction model becomes

fi = sign(qi)∗ (k1 ∗abs(qi)+ k2), (41)

where k1, k2 are friction coefficients.

Fig. 4. Desired trajectory.

6.2. Sliding mode control
Sliding mode gains are set to λ = 10, Kc = daig[1,1,1, ]

and Ks = diag[100,100,100], respectively for three joints.
Gains are selected to have the stable response. It turned
out that other lower gains gave the unstable responses.

Fig. 5 shows the tracking performances by the sliding
mode controllers. In the Cartesian space, the robot con-
trolled by the sliding mode controller follows the desired
trajectory well as shown in Fig. 5(a). The corresponding
joint tracking performances are plotted in Fig. 5(b). The
joint angle errors are also plotted in Fig. 5(c). We see that
the tracking errors of joint 2 and 3 are larger than that of
joint 1.

6.3. Neuro-sliding mode control
The same task is coducted by the neuro-sliding mode

control method here. The same controller gains are used.
The neural network has 6 hidden units. The learning rate
of 0.0002 is tested.

Tracking performances by the neuro-sliding mode con-
trol method are shown in Fig. 6. Comparing Fig. 6(a)
with Fig. 5(a) shows the better tracking performance by
the neuro-sliding mode control scheme. The correspond-
ing joint angles and errors are shown in Fig. 6(b) and
(c), respectively. We see that the tracking performance
by the neuro-sliding mode control method has been im-
proved, espeicially joint 2 error has been reduced.

We also plotted neural network output signals in Fig.
7. Compensating signals are small since controller gains
are multiplied to neural network outputs to generate the
torque. Compensating signal at joint 2 is relatively large
at the beginning since we have observed the larger error in
Fig. 6(c).

For the numerical comparison, we have summarized the
errors of the Cartesian tracking performances in Table 1.
The root-mean-square errors of the joint tracking errors
for the sliding mode control and the neuro-sliding mode
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(a) Tracking performancein Cartesian space.

(b) Joint tracking performance.

(c) Joint tracking error.

Fig. 5. Sliding mode control performance.

(a) Tracking performancein Cartesian space.

(b) Joint tracking performance.

(c) Joint tracking error.

Fig. 6. Neuro-sliding mode control performance.
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Fig. 7. NN compensating signals.

Table 1. Cartesian tracking error.

Sliding mode
control

Neuro-sliding mode
control

Error (m) 0.0062 0.0018

Table 2. Joint tracking error.

Sliding mode
control

Neuro-sliding mode
control

Joint 1(rad) 4.9740e-04 2.3973e-04
Joint 2(rad) 0.0048 0.0011
Joint 3(rad) 0.0046 0.0034

control are compared in Table 2. We clearly see that the
neuro-sliding controller works better.

7. CONCLUSION

The neuro-sliding mode control of the reference com-
pensation technique has been tested for a non-model based
control framework. The effect of selecting appropriate
gain values in the sliding mode control has been achieved
by introducing a neural network at the trajectory level.
The RBF network-like MLP has been used to compensate
for uncertainties in a three-link robot manipulator. Sta-
bility of the neuro-sliding mode control scheme has been
analyzed. Simulation studies showed that the tracking per-
formance of the neuro-sliding mode control scheme was
better than that of the sliding mode control scheme alone.
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